Enhanced dispersibility and cellular transmembrane capability of single-wall carbon nanotubes by polycyclic organic compounds as chaperon.

نویسندگان

  • Lirong Wang
  • Lihua Zhang
  • Xue Xue
  • Guanglu Ge
  • Xingjie Liang
چکیده

The common aggregation of single-wall carbon nanotube (SWCNT) in solution is the critical obstacle to elucidate their unique physico-chemical characteristics and biological properties. Therefore, it is very important to overcome this barrier through manipulation of the weak interaction of small molecules with nanotube surface limited interface. A highly dispersed SWCNT system was achieved by binding with polycyclic organic compounds (POCs) including rhodamine 123, ethidium bromide, fluorescein isothiocyanate and 1-pyrene butyric acid as chaperons, in cooperation with sodium dodecyl sulfate. POCs were believed to penetrate through the interstices of aggregated SWCNTs and bind with individual SWCNTs to form highly dispersed and stable SWCNT-POC-surfactant conjugates in both water and phosphate buffer-serum solution, confirmed by gel electrophoresis, transmission electron microscopy and atomic force microscopy. The possible binding interaction includes π-π stacking with side-wall, electrostatic interactions with defect sites and coating surfactants. Compared to pristine SWCNTs, individual SWCNT-POC conjugates had improved transmembrane passage ability through both endocytosis and diffusion pathways, validated by laser scanning confocal microscopy and micro-Raman mapping techniques. For the applications of SWCNTs in drug delivery, in vitro imaging and other research fields, this novel strategy could provide highly dispersed SWCNTs with better efficiency of drug loading and stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Chemistry of Anthracene (PAH) Removal by SWNT Nano-filters: DFT

Polycyclic aromatic hydrocarbons (such as, anthracene, benzo[a]pyrene and so on) are non-polar, hydrophobic compounds, which are not ionized. They are only slightly soluble in water. They are very dangerous compounds in the environment. The single-walled carbon nanotube (SWNT) is used for removal and conversion of anthracene to low-risk products. In this study, electron transfer between anthrac...

متن کامل

Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

In the present work, the performance of carbon nanotubes (c-CNTs) functionalized polydimethylsiloxane (PDMS) based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME) coupled to Capillary LC (CapLC) has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs) and carboxylic-multi walled carbon nanotubes (c-MWNTs) have been immobilized on the activated surf...

متن کامل

Preparation of Diaminedicarboxyplatinum (II) Functionalized Single-Wall Carbon Nanotube via Bingel Reaction As a Novel Cytotoxic Agent

Carbon nanotubes have unique properties like high stability, high surface to mass ratio and so on which make them suitable for medicinal purpose applications. Treatment of cancer by organoplatinum agents like Cisplatin has become unresponsive in most cases due to low distribution of drug in biological fluids, inability of drug to cross cellular membranes and low stability in biological environm...

متن کامل

Preparation of Diaminedicarboxyplatinum (II) Functionalized Single-Wall Carbon Nanotube via Bingel Reaction As a Novel Cytotoxic Agent

Carbon nanotubes have unique properties like high stability, high surface to mass ratio and so on which make them suitable for medicinal purpose applications. Treatment of cancer by organoplatinum agents like Cisplatin has become unresponsive in most cases due to low distribution of drug in biological fluids, inability of drug to cross cellular membranes and low stability in biological environm...

متن کامل

Hybrid nanofluid based on CuO nanoparticles and single-walled Carbon nanotubes: Optimization, thermal, and electrical properties

The purpose of this study is to use the thermal and electrical conductivities of copper oxide nanoparticles and carbon nanotubes for the preparation of high-performance nanofluids for achieving better heat transfer properties. These nanofluids consist of a water/Ethylene Glycol solution containing single-wall carbon nanotubes (SWCNTs) and copper oxide nanoparticles (CuONPs). The effects of such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 4 13  شماره 

صفحات  -

تاریخ انتشار 2012